Cayley-Dixon Resultant Matrices of Multi-univariate Composed Polynomials

نویسندگان

  • Arthur D. Chtcherba
  • Deepak Kapur
  • Manfred Minimair
چکیده

The behavior of the Cayley-Dixon resultant construction and the structure of Dixon matrices are analyzed for composed polynomial systems constructed from a multivariate system in which each variable is substituted by a univariate polynomial in a distinct variable. It is shown that a Dixon projection operator (a multiple of the resultant) of the composed system can be expressed as a power of the resultant of the outer polynomial system multiplied by powers of the leading coefficients of the univariate polynomials substituted for variables in the outer system. The derivation of the resultant formula for the composed system unifies all the known related results in the literature. A new resultant formula is derived for systems where it is known that the Cayley-Dixon construction does not contain any extraneous factors. The approach demonstrates that the resultant of a composed system can be effectively calculated by considering only the resultant of the outer system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley-Dixon projection operator for multi-univariate composed polynomials

The Cayley-Dixon formulation for multivariate projection operators (multiples of resultants of multivariate polynomials) has been shown to be efficient (both experimentally and theoretically) for simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of the Cayley-Dixon projection operator and the structure of Dixon matrices are analyzed for composed pol...

متن کامل

Cayley-Dixon construction of Resultants of Multi-Univariate Composed Polynomials

The Cayley-Dixon formulation for multivariate resultants have been shown to be efficient (both experimentally and theoretically) for computing resultants by simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of Cayley-Dixon resultant construction and the structure of Dixon matrices is analyzed for composed polynomial systems constructed from a multiv...

متن کامل

Fast Computation of the Bezout and Dixon Resultant Matrices

Efficient algorithms are derived for computing the entries of the Bezout resultant matrix for two univariate polynomials of degree n and for calculating the entries of the Dixon–Cayley resultant matrix for three bivariate polynomials of bidegree (m, n). Standard methods based on explicit formulas require O(n3) additions and multiplications to compute all the entries of the Bezout resultant matr...

متن کامل

Hybrid Dixon Resultants

Dixon 1908] describes three distinct homogeneous determinant representations for the resultant of three bivariate polynomials of bidegree (m; n). These Dixon resultants are the determinants of matrices of orders 6mn, 3mn and 2mn, and the entries of these matrices are respectively homogeneous of degrees 1, 2, and 3 in the coeecients of the original three polynomial equations. Here we mix and mat...

متن کامل

On the Construction of Generic Mixed Cayley-Sylvester Resultant Matrix

For a generic n-degree polynomial system which contains n+1 polynomials in n variables, we give the construction of the generic mixed Cayley-Sylvester resultant matrix. There are n− 1 generic mixed Cayley-Sylvester resultant matrices between the classical Cayley resultant matrix and the classical Sylvester resultant matrix. The entries of these new resultant matrix are of degree m(1 < m < n + 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005